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1 Bootstrapping

Let X1, . . . , Xn
iid∼ P be iid variables and for each i, let xi be a realization of Xi. Let X = (X1, . . . , Xn)

x = (x1, . . . , xn) Let S(X) be a statistic, with observed value s(x). We would like to estimate the
distribution of S(X), based on the observed data.

Definition 1.1 (Empirical distribution). Given the above setting, the empirical distribution P̂ is ob-
tained by putting 1

n mass on each xi.

Definition 1.2 (Bootstrap sample). A bootstrap sample of size m is X∗ = (X∗
1 , . . . , X

∗
n), where X

∗
1

iid∼ P̂.

Given a bootstrap sample X∗ we can approximate the distribution of S(X) via that of S ∗ (X∗),
which is the distribution of the statistic induced from X∗.

Example 1.3. Let P = Ber(θ). We know that X̄ is an unbiased estimate of θ. However, we would like
to understand the distribution of the error S(X) := X̄ − θ. Having observed x, P̂ = Ber(x̄. Let X∗ be
a bootstrap sample from P̂, and let S∗(X∗) = X∗ − x̄. Then nX̄∗ ∼ Bin(n, x̄), so E[S∗(X∗)] = 0, and

Var(S∗(X∗)) = x̄(1−x̄)
n .

Example 1.4. Let P be a uniform distribution over the heights of the worldwide population, and we
are interested in estimating is mean µ. Since we cannot measure them all, we obtain a sample x =
(x1, . . . , xn) of heights, which can be thought of as realizations of X1, . . . , Xn, n iid copies of X. Then
x̄ 1
n

∑
i xi is an estimate of µ, however this is only a single point estimate. We would like to know how

much S(X) = X̄ varies, or put another way, to infer about the distribution of S(X) = X̄. For this we
can use Monte Carlo sampling: create k bootstrap samples X∗

1 , . . . X
∗
k . Each such sample (of size(n)

would give is an estimate S(x̄∗
k) of , and we can create a histogram of these values and have it as an

approximation of the distribution of S(X) = X̄.

2 Permutation Tests

Statistical hypothesis test is a procedure where data is examined in order to conclude whether to
accept a given hypothesis about some parameter of interest. A permutation test is a non-parametric
procedure (i.e., it doesn’t assume any parametric form of the population), and is a highly useful procedure
for hypothesis testing. We will demonstrate the idea of hypothesis testing through example, taken
from https://www.jwilber.me/permutationtest/. Let XA ∼ PA, XB ∼ PB be two random variables
with means µA, µB . We collect nA and nB iid samples from each and we want to conclude whetherµA =
µB . Specifically, suppose the we want to examine the efficiency of a new shampoo to the quality of alpaca
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wool. We have a population of alpacas, and we randomly divide them to two groups, A and B, and
treat only the B alpacas with the shampoo.

We can formalize the hypotheses as:

• H0 : µA = µB

• H1 : µA < µB

We know that sample averages are unbiased estimates for population means, hence it is natural to define
the test statistic as S(X) = X̄B − X̄A, with observed value S(x) = x̄B − x̄A, obtained after treating the
B alpacas with the new shampoo. This will give as a single value, say, 1.7. However, we don’t know
how to interpret this value, as in order to do so, we need to know the distribution of the test statistic
under the null hypothesis. In a parametric test, we can, for example, assume that PA = N (µA, σ), and
PB = N (µB , σ), in which case a student t test can be performed. However, often times such assumption
is problematic, and we would like to avoid it. In such cases, a non-parametric is preferable. The idea
of permutation test is simple: we can use bootstrapping to approximate the distribution of S(X) using
empirical distribution. Specifically, we can permute our alpaca population and divide them randomly to
two new groups A′ and B;, and compute the test statistic s(x′). Clearly, since the partition is random,
µA′ = µB′ , so the null hypothesis holds in this simulation. Repeating this a large number of times (say,
10,000) and collecting the values of the test statistic from all permutation’s, will give us a histogram
approximating the distribution of the test statistic under the null hypothesis.

Given the true statistic s(x), we can use the histogram to 1− F (S = s), where F is the cumulative
distribution function of S under the null hypothesis. This is simply an integral of the histogram. This
is our p-value, which is the probability, under the null hypothesis, to get a statistic value at least as
extreme as what we got. The smaller the p-value is, the more likely it is that H0 is false. If we define a
rejection area of the form (a,∞), whose total probability is α (say, α = 5%), the meaning of the p-value
is the minimal α needed to reject H0 (i.e., when a = s).

3 Aside: Adjusting classifier outputs to change in class prior
probabilities

Let (X,Y ) be pair of random variables, where X can be thought of as data and Y as (symbolic) label.
Then the joint probability is P (X,Y ) = P (Y )P (X|Y ). We call p(Y ) the prior probability. The prior can
be easily estimated from training data by P̂ (Y = i) = ni

n , where ni is the number of data points from
class i and n is the total size of the training data. Suppose we have iid training samples from P (X,Y ),
which we used to train a wonderful classifier. Now the classifier is ready to be deployed. Unfortunately,
the data distribution in the real world is P ′(X,Y ) = P ′(Y )P (X|Y ), i.e., we assume that the conditional
elements P (X|Y ) are unchanged, however the prior component is changed (e.g., the proportion of dog
to cats may be different in the real world than in our training data). This is a case of domain adaptation
that has an elegant and simple solution.

Our trained classifier outputs P (Y |X). We also know (or can easily estimate) P (Y ). What we want
is the true posterior P ′(Y |X).

3.1 Known P ′(Y )

For a start, suppose we know P ′(Y ). Our goal is now to express P ′(Y |X) as a function of P (Y |X), P (Y ), P ′(Y ).
Using Bayes theorem, we have

P (X|Y ) =
P (X)P (Y |X)

P (Y )
.
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Since we assume that P (X|Y ) = P ′(X|Y ) (i.e., P (X|Y ) remains unchanged, we have

P (X)P (Y |X)

P (Y )
=

P ′(X)P ′(Y |X)

P ′(Y )
,

i.e.,

P ′(Y |X) =
P (X)P ′(Y )

P ′(X)P (Y )
P (Y |X).

Since we know P (Y |X), P (Y ) and ′P (Y ), what remains is to estimate P (X)
P ′(X) . To do that, note that∑

i P
′(Y = i|X) = 1, therefore P (X)

P ′(X)

∑
i
P ′(Y=i)
P (Y=i) P (Y |X) = 1, and

P (X)

P ′(X)
=

(∑
i

P ′(Y = i)

P (Y = i)
P (Y |X)

)−1

.

Altogether, this gives us

P ′(Y |X) =

P ′(Y )
P (Y ) P (Y |X)∑

i
P ′(Y=i)
P (Y=i) P (Y |X)

.

3.2 Unknown P ′(Y )

The more realistic case is when we actually don’t know P ′(Y ). One way to solve this case is using what’s
known as the “confusion matrix method”. For k classes, confusion matrix is a k × k matrix, whose i, j
entry is the probability to assign label j to an example from class i, that is

Pr(decision is j|Y = i).

We can estimate the confusion matrix from the training data. Note that our assumpsion that P ′(X|Y ) =
P (X|Y ) implies that

P ′(decision is j) =
∑
i

P (decision is j|Y = i)P ′(Y = i).

The P ′(decision is j) terms can be estimated from the test data. Therefore we obtain a system of k
equations in k unknowns (the P ′(Y = i) terms). Solving this system gives us the P ′(Y = i)’s, and now
we can apply the formula from the previous subsection.

Homework

1. Suggest a test statistic and a permutation test-based method to evaluate the quality of gener-
ative models (e.g., a model that generates deep fake face images) . Discuss its advantages and
disadvantages.

2. Say we have a test statistic S with observed value and we define our p-value as P = F (S), where
F is the cumulative distribution function of S under the null hypothesis. Show that P is uniformly
distributed under the null hypothesis.
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